第二十五届"希望杯"全国数学邀请赛

初三 第2试试题

 洗择题	5(舟	小题	4	分.	井	40	分)

1. If both a and c are real numbers, 2 and 3 are the two solutions of the equation ax^2-10x +c = 0 for x, then the value of a + c is (

(B) 12. (C) 14.

2. 如图 1,在 $\triangle ABC$ 中,BC > CA > AB,D,E,F 分别是 AB,BC,CA 边 上的点,DE // AC,FD // CB,若 AD:DB=1:2,则图中的相似三角形有

(A) 3.

(B) 4.

(D) 6.

3. 若 a-b=4, $ab+c^2+4=0$, 则 a 的值是(

(B) 3. (C) 4.

(D) 5.

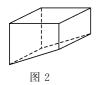
4. 将抛物线 $y=x^2$ 先向左平移 1 个单位,再向下平移 2 个单位,则所得的抛 物线的解析式是()

(A) $y = x^2 - 2x + 1$ (B) $y = x^2 + 2x - 1$ (C) $y = x^2 + 4x + 3$ (D) $y = x^2 - 2x - 1$.

5. 若 $3x^2 - x = 1$,则 $9x^4 + 12x^3 - 2x^2 - 7x + 2014$ 的值是(

(A) 2013. (B) 2014. (C) 2015.

(D) 2016.


6. 半径分别是 1,2 的 \bigcirc \bigcirc \bigcirc 1 和 \bigcirc \bigcirc 2 相外切,若半径是 3 的 \bigcirc 0 和它们都相切,则满足条件的 **⊙***O*₃ 的个数是()

(A) 6.

(B) 3.

(C) 4.

7. 给如图 2 所示的无水游泳池注水,如果进水速度是均匀的,那么,泳池内水的高度 h 随时间 t 变化的图象可能是(

(A)

8. 三角形内的一点和三角形三个顶点的连线将三角形分成三部分, 若这三部分的面积比是 1 : 2:3,则这样的点的个数是() (C) 6. (B) 3.

(A) 1.

9. Given positive integer m which is no larger than 10, and $m^{2014} + 2014^m$ can be divided by 5, then the number of such m is ()

(A) 2. (C) 4. (B) 3.

(D) 5.

10. 如图 3, 在平面直角坐标系 x - O - y 中, 点 $A(2,0), M(0, \frac{\sqrt{3}}{2})$,

 $N(5,2\sqrt{3})$, $NB \perp x$ 轴于点 B,P 为 MN 上一动点,则 PA + PB 的最小值为 $\frac{M}{2}$)

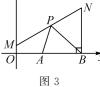
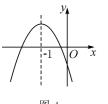
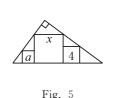
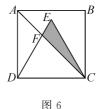


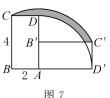
图 1

- (A) $3\sqrt{3}$.


- (C) $\frac{3}{2}\sqrt{3}$. (D) $\frac{3}{4}\sqrt{3}$.

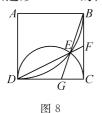

- 二、填空题(每小题 4 分,共 40 分.)
- 11. 若 $y = ax^2 + bx + c$ ($a \neq 0$) 的图象如图 4 所示,则 abc 的值是 (填:"正数"、"负数"
- **12.** 若关于 x 的方程 $x^2 + px + q = 0$ 有两个负根,则直线 y = px + q 不经过第 限. (填:"一"、"二"、"三"或"四")
 - **13.** 已知 $\begin{cases} x + xy + y = 6, \\ x^2 + y^2 = 12, \end{cases}$ 则 $x^3 + y^3$ 的值是_____
 - 14. 在 $\triangle ABC$ 中,AC = 8,BC = 6, $\angle ACB = 90^{\circ}$, $CD \perp AB$ 于点 D,若 $\triangle ABC$, $\triangle ACD$, $\triangle BCD$

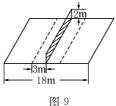

的内切圆的半径分别是 $r_1, r_2, r_3, y \mid r_1 + r_2 + r_3$ 的值是


15. 若关于 x 的方程 $x^2 - (m+5) | x | + 4 = m$ 恰有 3 个实数解,则实数 m =

16. 在平面直角坐标系 x - O - y 中,若直线 x = -1,x = 3,y = 3,y = kx - 2 围成的四边形的面积是 16,则 k =

17. As shown in Fig. 5, there are 3 squares in the right triangle. The sides of the two smaller squares are a and 4. The side of the square in the middle is x, then $x = (in x)^2$


18. 如图 6, 在边长为 2 的正方形 ABCD 内有等边三角形 CDE, AC 交 DE 于点 F,


则 $S_{\land CFE} =$ **19.** 如图 7,将长为 4,宽为 2 的长方形 ABCD 绕顶点 A 顺时针旋转 90° 到达 AB'C'D',图中的 两段弧线分别是顶点 C 、D 经过的路径,则阴影部分的面积为

20. 长与宽的比是 2:1 的长方形称为"特征长方形". 用宽分别为 a_1 , a_2 , a_3 , a_4 , a_5 ($a_1 < a_2 < a_3$) $(a_4 < a_5)$ 的 5 个"特征长方形"拼成的大长方形,记为 (a_1,a_2,a_3,a_4,a_5) ,则大长方 形 $(1,2,a_3,a_4,a_5)$ 的面积最大是

三、解答题 每题都要写出推算过程.

- 21. (本题满分 10 分) 如图 8,在边长为 1 的正方形 ABCD 中,以 A 为圆心、AB 为半径的弧与以 DC 为直径的半圆交于点 E,连结 DE 并延长交 BC 于 F,连结 BE 并延长交 DC 于 G.
 - (1) 求 *DG*: *GC* 的值;
 - (2) 求四边形 EFCG 的面积.

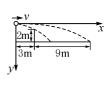
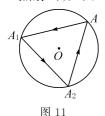
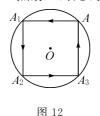
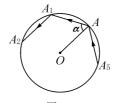





图 10

- 22. (本题满分 15 分) 如图 9, 排球场总长 18m, 设球网高为 2m, 运动员站在离网 3m 的线上(图中 虚线所示) 正对网前跳起将球水平击出. 以击球点为原点,建立如图 10 的直角坐标系,球运动的轨迹 方程是 $y = \frac{5x^2}{v^2}(x, y)$ 单位:m),其中 v 是球被击出时的速度(单位:m/s).
 - (1)设击球点在 3m 线的正上方,高度为 2.5m,求使球既不触网也不出界的击球速度的范围;
- (2) 若击球点在 3m 线的正上方,当高度小于 h(单位:m) 时,无论水平击球的速度多大,球不是 触网就是越界,求 h.
- **23.** (本题满分15分)如图 11,有一束光线,从中心为<math>O的圆环的A点射人,在圆环内经过两次反 射后从 A 点射出:如图 12,从 A 点射入的光线经过三次反射后从 A 点射出.

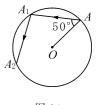


图 13

图 14

(1)如图13,若从A点射入的光线经过五次反射后从A点射出,求从A点射入的光线和圆环半 径 OA 的夹角 α 的度数:

(2) 如图 14,若从 A 点射入的光线和圆环半径 OA 的夹角是 50° ,则经过几次反射后光线从 A点射出?

初三 第2试答案

题号	1	2	3	4	5	6	7	8	9	10
答案	С	В	A	В	D	D	A	С	С	A
题号	1	1	1	2	1	3	14		15	
答案	负数		四		40		4.8		4	
题号	16		17		18		19		20	
答案	1		a + 4		$2\sqrt{3}-3$		2√3	-	2030	

21. (1)
$$\frac{DG}{GC} = 2$$
.

(2)
$$S_{CGEF} = \frac{7}{60}$$
.

- **22**. (1) 击球速度的范围是 $3\sqrt{10} < v < 12\sqrt{2}$;
 - (2) 若击球点在 3m 线的正上方 $\frac{32}{15}$ m 处,则无论水平击球的速度多大,球不是触网就是越界.
- **23.** (1) $\alpha = 60^{\circ}$.
 - (2) 经过 8 次反射后,从A点出来.